Species Details

Details of Thin coral will be displayed below

Thin coral   

Common Name: Thin coral
Scientific Name: Acropora tenuis
Local Name: .
Dhivehi Name: .
Animalia  (Kingdom)
Cnidaria  (Plylum)
Anthozoa  (Class)
Scleractinia  (Order)
Acroporidae  (Family)
Acropora   (Genus)

Thin coral's description

It occurs in corymbose colonies containing orderly-spaced branchlets. It has tube-shaped axial corallites and radial corallites have flaring lips. It is blue, cream, yellow or green in colour, and is similar to Acropora vermiculata.

Thin coral habitat

This species occurs in shallow, tropical reef environments. It is found on upper reef slopes and in shallow subtidal habitats including outer reef flats (Wallace 1999). This species is found from 8-20 m.

Thin coral threats

Members of this genus have a low resistance and low tolerance to bleaching and disease, and are slow to recover.

Acanthaster planci, the crown-of-thorns starfish, has been observed preferentially preying upon corals of the genus Acropora (Colgan 1987). One disease recorded (Willis et al. 2005). Crown-of-thorns starfish (COTS) (Acanthaster planci) are found throughout the Pacific and Indian Oceans, and the Red Sea. These starfish voracious predators of reef-building corals, with a preference for branching and tabular corals such as Acropora species. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts of COTS has become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area.

Acropora species are in the top three genera collected for the aquarium trade. This species is known in the aquarium trade (Delbeek pers. comm.). The total number of corals (live and raw) exported for this species in 2005 was 66,228.

In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.

Coral disease has emerged as a serious threat to coral reefs worldwide and a major cause of reef deterioration (Weil et al. 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby 2006). Increased coral disease levels on the GBR were correlated with increased ocean temperatures (Willis et al. 2007) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.

Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.

The severity of these combined threats to the global population of each individual species is not known.

Thin coral's status